Rabinowitz Floer homology and symplectic homology
نویسندگان
چکیده
منابع مشابه
Rabinowitz Floer Homology and Symplectic Homology
The first two authors have recently defined RabinowitzFloer homology groups RFH∗(M,W ) associated to an exact embedding of a contact manifold (M, ξ) into a symplectic manifold (W,ω). These depend only on the bounded component V of W \ M . We construct a long exact sequence in which symplectic cohomology of V maps to symplectic homology of V , which in turn maps to Rabinowitz-Floer homology RFH∗...
متن کاملEstimates and computations in Rabinowitz-Floer homology
The Rabinowitz-Floer homology of a Liouville domain W is the Floer homology of the Rabinowitz free period Hamiltonian action functional associated to a Hamiltonian whose zero energy level is the boundary of W . This invariant has been introduced by K. Cieliebak and U. Frauenfelder and has already found several applications in symplectic topology and in Hamiltonian dynamics. Together with A. Oan...
متن کاملLeaf-wise Intersections and Rabinowitz Floer Homology
In this article we explain how critical points of a perturbed Rabinowitz action functional give rise to leaf-wise intersection points in hypersurfaces of restricted contact type. This is used to derive existence results for hypersurfaces in general exact symplectic manifolds.
متن کاملFloer homology, symplectic and complex hyperbolicities
On one side, from the properties of Floer cohomology, invariant associated to a symplectic manifold, we define and study a notion of symplectic hyperbolicity and a symplectic capacity measuring it. On the other side, the usual notions of complex hyperbolicity can be straightforwardly generalized to the case of almost-complex manifolds by using pseudo-holomorphic curves. That’s why we study the ...
متن کاملThe Symplectic Floer Homology of Composite Knots
We develop a method of calculation for the symplectic Floer homology of composite knots. The symplectic Floer homology of knots defined in [15] naturally admits an integer graded lifting, and it formulates a filtration and induced spectral sequence. Such a spectral sequence converges to the symplectic homology of knots in [15]. We show that there is another spectral sequence which converges to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales scientifiques de l'École normale supérieure
سال: 2010
ISSN: 0012-9593,1873-2151
DOI: 10.24033/asens.2137